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Abstract. We study Lagrangian trajectories and scalar transport statistics in decaying Burgers
turbulence. We choose velocity fields solutions of the inviscid Burgers equation whose probability
distributions are specified by Kida’s statistics. They are time-correlated, and neither time-reversal
invariant nor Gaussian. We discuss in some detail the effect of shocks on trajectories and transport
equations. We derive the inviscid limit of these equations using a formalism of operators localized
on shocks. We compute the probability distribution functions of the trajectories although they
do not define Markov processes. As physically expected, these trajectories are statistically well
defined but collapse with probability one at infinite time. We point out that the advected scalars
enjoy inverse energy cascades. We also make a few comments on the connection between our
computations and persistence problems.

1. Introduction

Lagrangian trajectories driven by a velocity fieldu(x, t) are solutions of the differential
equation:

dx(t)

dt
= u(x(t), t). (1)

As known from the works of Richardson, Kolmogorov and Batchelor, for example, [1], they
acquire peculiar properties when the flow becomes turbulent. These properties are probably
going to play an important role in the understanding of fully developed turbulence. For
example, the recent proof [6] of the existence and uniqueness of the stationary state for the
inviscid forced Burgers turbulence is based on an analysis of these trajectories.

Statistical properties of these trajectories may be deciphered by looking at transport
phenomena in turbulent systems. Recent studies of Kraichnan’s advection models [2] have
made these expected properties more explicit. Kraichnan’s models assume that the velocity
fields are Gaussian and white-noise in time. These simplifications lead to the solvability of the
models. See [3] for recent studies of the Kraichnan models for incompressible fluids and [4,5]
for compressible ones. Two kinds of behaviour have been observed:

(1) Statistical ill-definedness, meaning that two trajectories starting at the same point have a
non-vanishing probability to be far apart at later time.

∗ Or ‘Lagrangian trajectories in decaying Burgers turbulence’.
† Membre du CNRS.
‡ Laboratoire de la Direction des Sciences de la Matière du Commissariatà l’Energie Atomique.
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(2) Trajectory collapse for compressible enough fluids, meaning that two trajectories starting
initially at different positions have a non-zero probability to follow the same path after
some time.
However:

(3) Properties (1) and (2) do not seem to occur simultaneously.

The motivation of the present work is to decipher whether these properties are more robust
and hold true for more realistic velocity fields than those chosen in Kraichnan’s models. Of
course we could not solve the problem with a velocity field describing a real three-dimensional
turbulent system. Instead we shall consider (unrealistic) velocity fields, solutions of the Burgers
equation which in 1 + 1 dimensions takes the form:

∂tu + u∂xu− ν∂2
xu = 0 (2)

whereu = u(x, t) is the (compressible) velocity field andν the viscosity. This is a variant of
the Navier–Stokes equation in which the role of the pressure has been neglected. Although we
shall stick to one-dimensional space, some of the following considerations could be generalized
to higher dimensions.

No external force is applied to equation (2). So its inviscid limitν → 0 corresponds to
decaying turbulence whose statistical description consists in finding a probability distribution
of the velocity fields solution of equation (2) given random initial data. One usually expects
a more universal behaviour at large time. Thus, we shall consider a family of velocity fields,
solutions of the inviscid limitν → 0 of the Burgers equation, whose probability distribution
describes the long-time behaviour of large classes of initial conditions. These velocity statistics
are those first introduced by Kida [8]. In contrast to the Kraichnan model, the velocity fields
are then not white-noise in time, and neither time-reversal invariant nor Gaussian.

For compressible fluids, one may look at two kinds of transport phenomena depending
on whether one is looking at the advection of a tracer, that we shall denote byT (x, t), or at
the advection of the density of a pollutant, that we shall denote byρ(x, t). The corresponding
viscosity is writtenκ. The equations governing these transports are

∂tT (x, t) + u(x, t)∂xT (x, t)− κ∂2
xT (x, t) = 0 (3)

∂tρ(x, t) + ∂x(u(x, t)ρ(x, t))− κ∂2
xρ(x, t) = 0. (4)

They differ by the order of the derivative and velocity.
In the inviscid limitν → 0, solutions of the Burgers equation develop shocks at which the

velocity is not smooth. This non-smoothness implies that the naive definition of the trajectories
does not apply. Therefore, these trajectories and the transport equations have to be dealt with
carefully. As we shall see, a correct definition of the transport equations will turn out to be

∂tT (x, t) + 1
2(u(x

+, t) + u(x−, t))∂xT (x, t)− κ∂2
xT (x, t) = 0 (5)

∂tρ(x, t) + ∂x 1
2((u(x

+, t) + u(x−, t))ρ(x, t))− κ∂2
xρ(x, t) = 0 (6)

with u(x±, t) = limε→0+ u(x±ε, t). Although equations (5), (6) seem to be naively equivalent
to equations (3), (4), they are not since in the inviscid limit the velocity fieldu(x, t) is not
smooth.

In the limit κ → 0, equations (5), (6) have a natural interpretation in terms of Lagrangian
trajectories. However, the naive equation (1), which is actually meaningless sinceu(x, t) is
discontinuous, has to be modified into

dx(t)

dt

∣∣∣∣
+

= 1

2
(u(x(t)+, t) + u(x(t)−, t)). (7)
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Again this differs from equation (1) becauseu(x, t) is not smooth. The physical meaning of
this modification is clear. At points of discontinuity, the ill-defined velocity is replaced by the
velocity of the shock which, as has been well known for some time [7–9], is just the average
of the velocities just before and just after the shock. Once this has been performed, we shall
describe how to compute the probability distribution functions (PDF) of the trajectories and
we shall use them to discuss the properties of the transport equation (5) in the limitκ → 0.

This paper is organized as follows. In the following section we recall basic facts concerning
the Burgers equation and the velocity profiles we shall use. Section 3 is devoted to giving a
precise definition of Lagrangian trajectories in the inviscid limitν → 0 and to the relation
with the correct form of transport equations and their solutions. In section 4 we establish
identities, called equations of motion, which are valid inside correlation functions. This is
based on operators localized at shocks and their algebra. In section 5, the backward and
forward probability distribution functions of the trajectories are introduced and their formal
properties emphasized. We use the identities established in section 4 to verify that these
PDFs are solutions of the transport equations. In section 6, we make explicit computations
for one- and two-particle distributions. We check the consistency with the expected physical
properties of the trajectories. In particular, we show by different approaches that the trajectories
are statistically well-defined but that particles have a non-vanishing probability to collapse.
This is in agreement with the general properties of Lagrangian trajectories mentioned above
as (1)–(3). As we deal with a highly compressible fluid, the alternative (2) is realized and
the alternative (1) is excluded. The connexion with persistence problems is made. Finally,
arguments indicating that the energy cascade in scalar advection in these flows is inverse, i.e.
towards the large scale, are presented in section 7.

2. Velocity profiles

This short section is devoted to the specification of the statistics of the velocity profiles to be
used in this paper.
• In order to fix notations, we recall a few elementary facts concerning the Burgers

equation (see e.g. [7–9] and references therein). As is well known, the equation is solved by
implementing the Cole–Hopf transformation which maps it to the heat equation. This works
as follows. LetZ(x, t) = exp[− 1

2ν8(x, t)] whereu(x, t) = ∂x8(x, t). Equation (2) foru is
mapped into the heat equation forZ:

[∂t − ν∂2
x ]Z(x, t) = 0.

Thus, given the initial conditionu(x, t = 0) ≡ u0(x), the velocity field at a later timet is
recovered from the potential8(x, t) given by the relation

exp

[
− 1

2ν
8(x, t)

]
=
∫

dy√
4πνt

exp

[
− 1

2ν

(
80(y) +

(x − y)2
2t

)]
(8)

with80(x) standing for the initial potential such thatu0(x) = ∂x80(x). The inviscid Burgers
equation corresponds to the limitν → 0. The solution is then given by solving a minimalization
problem

u(x, t) = ∂x8(x, t) with 8(x, t) = min
y

(
80(y) +

(x − y)2
2t

)
. (9)

Outside shocks the minimum is reached for only one valuey∗ of y, the solution of the equation
u0(y∗)t = x − y∗. The velocity isu(x, t) = x−y∗

t
= u0(y∗). It is effectively a local

solution of the inviscid Burgers equation since, by the minimum condition definingy∗, we
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haveu(x, t) = u0(x − tu(x, t)). A simple geometrical construction of the solution (9) is
described in [7, 8]. For larget , y∗ coincides approximately with one of the local minima of
80(y) and it practically does not change under small variations ofx so that, in between the
shocks, the velocity is approximately linear with the slope1

t
.

Shocks appear when the minimum is reached for two valuesy1 and y2 of y. Let
81,2 = 80(y1,2) be the value of the initial potential at these points. Then equation (8) allows
one to determine the velocity profileus(x, t) around and inside the shocks at finite value of the
viscosityν by expressing exp[− 1

2ν8s(x, t)] as the sum of contributions from the two minima.
One obtains

us(x, t) = 1

t

(
x − 1

2
(y1 + y2)

)
− µs

2t
tanh

(
µs

4νt

(
x − ξst − 1

2
(y1 + y2)

))
(10)

whereµs = y1 − y2 > 0 andξs = 81−82
y1−y2

. The width of the shock is of orderlc ' 2νt
µs

. In the
inviscid limit ν → 0, equation (10) becomes

us(x, t)|ν=0 = ξs ∓
µs

2t
+
x − xs(t)

t
for ± (x − xs(t)) > 0 (11)

wherexs(t) = ξst + 1
2(y1 +y2) is the timet position of the shock which moves with the velocity

ξs and follows a Lagrangian trajectory. The values of the velocity on the two sides of the shock
are

u±s ≡ us(x±s ) = ξs ∓
µs

2t
(12)

so thatµs
t

is the amplitude of the shock.
• To mimic this large-time behaviour, following Kida [8], we choose as velocity profiles

the ansatz

u(x, t) = ∂xS(x, t) with S(x, t) = min
j

(
φj +

(x − yj )2
2t

)
. (13)

The points(φj , yj )j∈Z specify a given realization. For any realization, i.e. for any data
of the points(φj , yj ), these ans̈atze (13) are solutions of the inviscid Burgers equation. They
have exact sawtooth profiles† with slope 1/t (see figure 1). In this ansatz all shocks are created
at timet = 0. The later time evolution is then governed by the shock collisions. Thus different
times are strongly correlated.

Following Kida [8], we shall concentrate on the velocity statistics specified by demanding
that(φj , yj )j∈Z be a Poisson point process‡ with intensityJ = eφ dφ dy.

This choice of statistics ensures that the velocityu(x, t) is self-similar with characteristic
length l(t) ∼ √t which means thatsu(sx, s2t) ∼= u(x, t). Here and in the following,∼=
means an equality in law, i.e. inside any correlation functions. We could as well choose
other intensities for the Poisson process. This amounts to choosing other scalings for the
characteristic length.

3. Lagrangian trajectories and transport equations

Lagrangian trajectoriesx(t) starting at pointx0 at time t0 are defined as solutions of the
evolution equation

dx(t)

dt
= u(x(t), t) with x(t0) = x0. (14)

† In particular, the velocity is not defined by the above formulae at the shocks. This is at the origin of most of the
following discussions.
‡ The basic rules to manipulate such processes are briefly recalled in appendices A and B, where some explicit
computations are made.
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Figure 1. The sawtooth velocity profile.

In this section, we shall specify the equation governing Lagrangian trajectories in the inviscid
case. This first requires a detour through theν 6= 0 situation.
• The above differential equation is well-posed for a velocity fieldu(x, t) solution of

the Burgers equation with finite non-vanishing viscosityν 6= 0, since thenu(x, t) is smooth
enough.

However, the limitν → 0 is delicate:

(i) If the pointx(t) of a trajectory is far from shocks, the velocity is then regular around that
point even in the inviscid limit and the trajectory is well defined. At large time, the velocity
far from shocks is of the formu(x, t) = 1

t
(x − y∗) with y∗ approximately constant and

the trajectories are then straight lines. This applies as long as the trajectories are away
from shocks.

(ii) Assuming that shocks are diluted, the trajectories near a shock in the inviscid limitν → 0
may be analysed using the velocity profile (11). In this environment, solutions of the
Lagrange equatioṅx = u(x, t) are such that:

sinh
( µs

4νt
(x(t)− xs(t))

)
exp

(
− µ

2
s

8νt

)
= constant

with xs(t) the timet position of the centre of the shock. Recall that the width of the shock
is of orderlc ' 2νt

µs
. This equation means that particles away from the shock take a finite

time to enter the shock. Once they are in the shock they move coherently with it with
velocity almost equal toξs ≡ ẋs(t). But they never cross the shock centre.

• If we want to recover theν = 0 limit behaviour directly in the inviscid case with
the ansatz (13) for the velocities, we have to be careful. At discontinuities of the velocity,
equation (14) does not make sense for two reasons: the velocity is not defined at the shocks
and the derivative of a differentiable function cannot exhibit pure discontinuities.

A simple modification that will ensure the gluing of particles to shocks, the main feature
at finite but small viscosity, is the following:
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(i) First we defineu(x, t) ≡ 1
2(u(x

+, t)+u(x−, t)). For the ansatz (13), this definition makes
sense for anyx and extends the definition ofu(x, t) to shocks (obviouslyu = u away
from shocks).

(ii) Then we demand that trajectories be continuous and satisfy

dx(t)

dt
|+ ≡ lim

ε→0+

x(t + ε)− x(t)
ε

= u(x, t). (15)

If we assume that the shocks form a discrete set (no limit points)† these two requirements
ensure that trajectories are uniquely defined fort > t0 once the boundary condition
x(t0) = x0 is specified. Since the velocity of a shock is the mean of the velocities at the
points just preceding and just following it, equation (15) ensures that particles stick to
shocks.

• According to the ansatz (13), away from shocks,u(x, t) = 1
t
(x− y) for somey. So the

trajectory is

x(t) = x0 + (t − t0)x0 − y
t0

, away from shocks (16)

with x0 the position at timet0. This is true up to the time at which the particle meets a shock.

Shocks are at the points where two parabolaeφ1,2+ (x−y1,2)
2

2t minimizing equation (13) intersect.
They move with a velocityξ12 = φ1−φ2

y1−y2
. In the time interval during which the shock exists, the

trajectory equation is the shock equation:

x(t) = 1
2(y1 + y2) + ξ12t on the shock. (17)

Once a particle is on a shock it follows it and the cascade of shocks arising from its collisions.
Note that when two shocks hit they merge into a third shock. In particular, a particle not on
a shock at timet has never met a shock before‡. A general feature of the trajectories is that
particles move at constant velocity on intervals of the form [t, t ′[ with t < t ′.
• This definition of the Lagrangian trajectories ensures the physical fact that the velocity

field in the inviscid limit is transported by the fluid. Indeed, since a particle moving along a
Lagrangian trajectory keeps its velocity for a finite time intervalε with ε sufficiently small,
one has

lim
ε→0+

1

ε
[u(x + εu(x, t), t + ε)− u(x, t)] = 0.

Accordingly, the transport equation for a tracerT (x, t) moving in the inviscid velocity field
u(x, t) will be

lim
ε→0+

1

ε
[T (x + εu(x, t), t + ε)− T (x, t)] = 0. (18)

It coincides with theκ → 0 limit of equation (5) provided the Lagrangian trajectories are
specified as in (15).

We show now how the above equation (18) can be solved. The idea is to find an implicit
formula for the Lagrangian trajectories, taking any number of shocks into account. Fixx0 and
t0, and consider the functionX (x, t) ≡ x − x0 − (t − t0)u(x, t) for t > t0 andx arbitrary.
It is readily checked thatX (x,t)−X (x

′,t)
x−x ′ > t0

t
, so that for fixedt , X (x, t) is a strictly increasing

function ofx with limx→±∞ X (x, t) = ±∞. This means that we can define a functionx̃(t)
for t > t0 by the condition thatX (x̃(t)+, t) > 0 > X (x̃(t)−, t). It is cumbersome but

† The probability distribution for the velocities ensures that this happens with probability one.
‡ A different proof of the same result can be found in appendix B where it appears as a natural part of the argument.
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straightforward to check that̃x(t) is the solution of (15) with initial conditioñx(t0) = x0.
Hence the solution of (18) with initial conditionT (x, t0) = θ(x − x0), whereθ(x) is the
Heaviside step function, isT (x, t) = θ(x − x0 − (t − t0)u(x, t)). By linearity, the solution
with initial dataT (x, t0) = T0(x) is T (x, t) = T0(x− (t − t0)u(x, t)). This solution develops
discontinuities† at the shocks, even if the initial condition is smooth.

4. Operator localized on shocks and equations of motion

In this section, we discuss what happens to the Burgers equation in the inviscid limit. We shall
argue that the actual inviscid Burgers equation is not the naive limitν → 0 of equation (2) but
is

[∂tu(x, t) + 1
2(u(x

+, t) + u(x−, t))(∂xu(x, t))] = 0 (19)

with the equality valid inside correlation functions with velocity fields (with or without
derivatives) away fromx and velocity fields (without derivatives) at the pointx. This is
not quite the usual way to write the inviscid Burgers equation. So we shall start with the more
familiar formulae and show the equivalence with (19). The argument will be based on an
analysis of operators localized on shocks which may be used to derive equations of motion
valid inside any correlation functions.
• At ν 6= 0 the Burgers equation (2) could be written as

(∂t + u∂x − ν∂2
x + λ2ν(∂xu)

2)eλu = 0. (20)

Since eλu is finite in the inviscid regime, the distribution∂2
xeλu is well defined in this limit, and

ν∂2
xeλu vanishes whenν → 0. Equation (20) can be rewritten in this limit as

(∂tu(x, t) + u(x, t)∂xu(x, t))e
λu(x,t) + λε(x, t)eλu(x,t) ∼= 0. (21)

Here ε(x, t) is the dissipation field defined byε(x, t) = lim
ν→0

ν(∂xu)
2. The product

u(x, t)∂xu(x, t) is ill-defined since it is a product of distributions. Equation (21) should
actually be read as(

∂t + λ∂λ
1

λ
∂x

)
eλu(x,t) + λ2ε(x, t)eλu(x,t) ∼= 0. (22)

This is the well known inviscid equation of motion. The fact that the dissipation field survives
the inviscid limit is sometimes called the dissipative anomaly.
• The presence of shocks is at the origin of universal features which are independent of

the details of the statistics. As explained in [10], they may be analysed by looking at fields
localized on the shocks. By definition, these fields may be represented for any realization as

Og(x, t) =
∑

shocks

g(ξs, µs)δ(x − xs(t)) (23)

where the sum is over the shocks withxs(t) denoting the position of the shock,ξs its velocity
andµs

t
its amplitude. The functiong(ξs, µs) which specifiesOg will be called the form factor

of the operator.
By using the velocity profile (10) inside and around the shocks, one may map fields

defined in terms of the velocityu(x, t) into the shock representation. The two basic examples
described in [10] are the generating functional(∂x − λ

t
)eλu(x,t) andε(x, t)eλu(x,t) with ε(x, t)

the dissipation field. These fields are localized on the shocks. Indeed, outside shocks

† But no nastier singularities.
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(∂xu(x, t)− 1
t
) vanishes since away from shocks,u(x, t) = x−y∗

t
with y∗ almost independent

of x. Similarly, the dissipation fieldε(x), which is naively zero due to the prefactorν in its
definition, is actually a non-trivial field since(∂xu)2 is singular in the inviscid limit. These
singularities are localized on shocks and so is the dissipation field. In other words, dissipation
takes place only at shocks.

The shock velocity profiles (10) at finiteν can be used to regularize the ill-defined
expressions that arise in a naiveν = 0 limit. In practice, given a local functional of the
velocity, which is well defined at finite viscosity, one takes theν = 0 limit in the distributional
sense. For the above two examples, one obtains [10]:(

∂x − λ
t

)
eλu(x,t) = −2

∑
s

eλξs sinh

(
λµs

2t

)
δ(x − xs(t)) (24)

and

ε(x, t)eλu(x,t) = 2λ−3
∑
s

eλξs
(
λµs

2t
cosh

(
λµs

2t

)
− sinh

(
λµs

2t

))
δ(x − xs(t)). (25)

Now one may use the representation of the dissipation field as an operator localized on
shocks to find alternative representations of them. Indeed equation (24) implies(
u

(
∂xu− 1

t

)
eλu
)
(x,t)

= − 2

λ2

∑
s

eλξs
(
λξs sinh

(
λµs

2t

)
+
λµs

2t
cosh

(
λµs

2t

)
− sinh

(
λµs

2t

))
×δ(x − xs(t)).

However, looking at the product of the operator (24) with velocity at nearby points gives

1

2

(
u(x+, t) + u(x−, t)

) ((
∂xu− 1

t

)
eλ u

)
(x,t)

= − 2

λ2

∑
s

eλξs λξs sinh

(
λµs

2t

)
δ(x − xs(t)).

(26)

This is found using the fact that the velocity on the two sides of the shocks areu±s = ξs ∓ µs
2t .

Comparing these expressions with the form factor of the dissipation fields, equation (25), gives

λε(x, t)eλu(x,t) ∼= ( 1
2(u(x

+, t) + u(x−, t))− u(x, t))(∂xu(x, t))eλu(x,t). (27)

This is an extension of the well known formulaε(x) = 1
12 lim l→0 ∂l [u(x)− u(x + l)]3. In

this formula,u∂xueλu means∂λ 1
λ
∂xeλu. As expected, the dissipation field is located on the

discontinuity of the velocity field. This relation is valid inside any correlation functions with
other fields away from pointx.

Comparison of equation (20) with (27) yields an alternative way of writing the inviscid
Burgers equation in which the dissipation has completely disappeared:

[∂tu(x, t) + 1
2(u(x

+, t) + u(x−, t))(∂xu(x, t))]eλu(x,t) ∼= 0. (28)

This is equivalent to equation (19). It has a simple interpretation: it is the simplest possible
point splitting regularization of the naive inviscid Burgers equation. The validity of this formula
can be checked by hand in simple explicit correlation functions.
• Correlation functions of the velocity fields, without any derivative, are continuous as

functions of the positions of the velocities. But the non-smoothness of the velocities in the
inviscid limit implies that correlation functions of derivatives of the velocity field may be
discontinuous and/or singular when points coincide.

This has echoes of the products of operators localized on shocks:
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(i) Products of an operator localized on shocks times powers of the velocity field are
discontinuous at coinciding points. These properties were illustrated in equation (26).

(ii) Products of operators localized on shocks are singular at coinciding points. More precisely,
fields localized on shocks form a closed algebra [10]:

Of (x, t) ·Og(y, t) = δ(x − y)Ofg(x, t) + regular. (29)

The contact termδ(x − y) in this operator product expansion arises from the coinciding
shocks in the double sum representing the product operator. This operator product
expansion implicitly assumes that shocks are diluted.

5. Lagrangian trajectory statistics.

For non-time-reversal invariant velocity fields one may consider backward and forward
Lagrangian statistics.
• The backward statistics encodes the probability distribution of the initial positions of

the trajectories at timet0 knowing their positions at later timet > t0. Forn-trajectories they
are given by the expectation values,

P
[n]
ret.(xj , t |x0

j , t0) =
〈 n∏
j=1

Pret.(xj , t |x0
j , t0)

〉
with Pret.(x, t |x0, t0) = δ(x0 − x̂(t0|x, t))

(30)

with x̂(t0|x, t) the position of the trajectory at timet0 which will be atx at later timet > t0.
Although backward statistics are clearly a well defined object from a probabilistic point

of view, our representation of backward statistics, involvingx̂(t0|x, t)may seem inappropriate
because trajectories may merge with increasing time, so that in general trajectories cannot be
followed for decreasing time. However, the measure of the set for which one or more of the
pointsxj lies exactly on a shock at timet is zero, so that the backward trajectory is defined
with probability one. This is obviously true as long as the pointsxj are all distinct. When two
or more of them coincide, things are not so clear. However, we shall be able to check explicitly
that our backward statistics are well normalized, i.e. that∫ ∏

j

dx0
j P

[n]
ret.(xj , t |x0

j , t0) = 1.

This ensures that we have not missed delta functions at coincident points.
• The forward statistics codes the probability distribution of the final positions of the

trajectories at timet knowing their initial positions at a previous timet0 < t . Forn-trajectories
they are given by the expectation values,

P
[n]
adv.(xj , t |x0

j , t0) =
〈 n∏
j=1

Padv.(xj , t |x0
j , t0)

〉
with Padv.(x, t |x0, t0) = δ(x − x(t |x0, t0)) (31)

with x(t |x0, t0) the position of the trajectory at timet which was atx0 at the initial timet0 < t .
Hence,x̂(t0|x, t) andx(t |x0, t0) are formally inverse functions:x(t |x̂(t0|x, t), t0) = x. The
forward probability distribution functions are normalized such that∫ ∏

j

dxj P
[n]
adv.(xj , t |x0

j , t0) = 1.
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• To deal with functions and not distributions, it is convenient to compute expectation
values of products of step functions:

H [n](xj , t |x0
j , t0) =

〈 n∏
j=1

H(xj , t |x0
j , t0)

〉
with H(x, t |x0, t0) = θ(x0 − x̂(t0|x, t))

(32)

with θ(z) the step function:θ(z) = 0 for z < 0 andθ(z) = 1 for z > 0. The functionsH [n]

give the probabilities for particles at pointsxj at timet to be at positions abovex0
j at timet0.

They are such that

P
[n]
ret.(xj , t |x0

j , t0) =
∏
j

∂x0
j
H [n](xj , t |x0

j , t0) (33)

P
[n]
adv.(xj , t |x0

j , t0) = (−)n
∏
j

∂xjH
[n](xj , t |x0

j , t0). (34)

SinceH [n](xj , t |x0
j , t0) are expectation values of the local functional of the velocity field not

involving derivatives they can be computed directly from the velocity distribution functions.
These are recalled in appendix A.

Remark thatP [n]
ret. will be regular at coinciding points since they do not involve derivatives

of u, whereasP [n]
adv. will be singular since they involve such derivatives.

• Let us now argue that the backward statistics are related to the joint laws of the speeds
u(xj , t), at least as long as the configuration is non-degenerate (no two pointsxj coincide). In
this case indeed, with probability one, noxj lies on a shock, so each has a speed described by
a single parabola, and then the same was true at any previous time. Hence with probability
one, the particle passing atxj at timet was atxj − (t − t0)u(xj , t) at timet0 (remember that as
long as they do not meet a shock, particles move at constant speed). So only a trivial change
of variables is needed to go from the joint law of the initial positionsx0

j to the joint law of the

speedsu(xj , t), the relation beingu(xj , t) = xj−x0
j

t−t0 . This ensures that the total mass of the
backward distribution for non-coincident points is unity, so that no finite probability is carried
by degenerate configurations. This implies that

H(x, t |x0, t0) = θ(x0 − x + (t − t0)u(x, t)).
Hence the backward probability distribution is

Pret.(x, t |x0, t0) = δ(x0 − x + (t − t0)u(x, t)). (35)

It satisfies the adequate inviscid transport equation

[∂t + 1
2(u(x

+, t) + u(x−, t))∂x ]Pret.(x, t |x0, t0)
∼= 0 (36)

with the appropriate boundary condition

Pret.(x, t |x0, t0)|t=t0 = δ(x − x0).

Equation (36) is valid inside correlation functions. Note thatPret. does not satisfy the naive
transport equation (3) withκ = 0, since equation (21) yields

[∂t + u(x, t)∂x ]Pret.(x, t |x0, t0)
∼= −(t − t0)2ε(x)δ′′(x0 − x + (t − t0)u(x, t)) 6= 0

where the left-hand side does not vanish due to the dissipative anomaly. To prove equation (36),
let us expandPret.(x, t |x0, t0) in Fourier series as

Pret.(x, t |x0, t0) =
∫

dk

2π
eikx0P̂k(x, t) with P̂k(x, t) = e−ik(x−(t−t0)u(x,t)).
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PluggingP̂k into equation (36) gives

[∂t + 1
2(u(x

+) + u(x−))∂x ]P̂k(x, t) = (ik)[u(x)− 1
2(u(x

+) + u(x−))]P̂k(x, t)
+(ik(t − t0))[∂tu(x) + 1

2(u(x
+) + u(x−))(∂xu(x))]P̂k(x, t).

The first term in the right-hand side vanishes since correlation functions of the velocity field
without derivative are continuous whereas the second vanishes thanks to the equation of motion
(28).
• The forward probability distribution is

Padv.(x, t |x0, t0) = −∂xH(x, t |x0, t0)

= (1− (t − t0)∂xu(x, t))δ(x0 − x + (t − t0)u(x, t)). (37)

It satisfies the transport equation

[∂t + ∂x 1
2(u(x

+, t) + u(x−, t))]Padv.(x, t |x0, t0)
∼= 0 (38)

which corresponds to the limitκ → 0 of equation (6). Remark that the Jacobian
(1− (t − t0)∂xu(x, t)) is always positive since away from shocks∂xu = 1/t < 1/t0 and
that on shocks∂xu is negative.

Equation (37) implies that the forward probability distribution may be decomposed as the
sum of the backward probability distribution plus an operator which is localized on shocks.
Namely,

Padv.(x, t |x0, t0) = t0

t
Pret.(x, t |x0, t0)− D(x, t |x0, t0) (39)

with D(x, t |x0, t0) = (t − t0)(∂xu− 1
t
)Pret.(x, t |x0, t0) whose shock representation is

D(x, t |x0, t0) =
∑
s

χ
(µs

2t
> |ξs − vx,x0|

)
δ(x − xs(t)) with vx,x0 =

x − x0

t − t0
with χ(C) the characteristic function of the constraintC. Here the constraint may also be
written asu−s 6 vx,x0 6 u+

s which means that the speed of the trajectory going straight from
(x0, t0) to (x, t) is between the two extreme values of the velocity at the shock.

6. Lagrangian trajectory distribution functions

The purpose of this section is to derive explicit formulae for the advanced and retarded one- and
two-point function distributions of Lagrangian trajectories. We use these results to compute
the short distance behaviour of these correlation functions, the probability that a particle meets
a shock or that two particles get glued together. We conclude with remarks on persistence
problems.

6.1. One-point functions

The one-point probability law of the velocity fieldu ≡ u(x, t) is√
t

2π
exp

[
− tu

2

2

]
du.

This is well known since Kida [8], but rederived for completeness in appendix A. Thus the
one-point PDFs for backward and forward trajectories coincide and are equal to:

P
[1]
ret.(x, t |x0, t0) = P [1]

adv.(x, t |x0, t0) =
√

t

2π(t − t0)2 exp

[
− t (x − x

0)2

2(t − t0)2
]
. (40)
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It simply reflects the diffusion of the trajectories with〈(x−x0)2〉 ' (t− t0)2/t . For larget/t0,
this is just the ordinary dispersion of Brownian motion. But whent − t0 is small compared
with t0, the dispersion grows linearly with time because with high probability no shock has
been met.

It is instructive to compare this with the probability distribution for a particle starting at
x0 at timet0 to flow tox at timet without hitting any shock. As computed in appendix B, this
is equal to

P no
shock

(x, t |x0, t0) dx =
(
t0

t

)√
t

2π(t − t0)2 exp

[
− t (x − x0)

2

2(t − t0)2
]

dx. (41)

In particular, the probability that a particle does not meet a shock betweent0 andt is t0/t .
The probability distribution for a particle starting atx0 at time t0 to flow to x at time t

hitting exactlyn shocks is more complicated forn > 0, and it is funny that the resummations
for all values ofn lead to such a simple result.

6.2. Two-point functions

The two-point trajectory PDFs are slightly more lengthy to compute. The two-point PDFs for
the velocity fieldu1 ≡ u(x1, t) andu2 ≡ u(x2, t) are recalled in appendix A. In the following,
Ft(z) stands for a variant of the error function defined by

Ft(z) = e
z2

2t

∫ z

−∞
e−

u2

2t du.

• Let us first look at the backward probability distribution. Recall that it may be computed
by a simple change of variables from the velocity distribution function. Thus forx1 > x2:

P
[2]
ret.(x, t |x0, t0) = t2

(t − t0)2 δ(1− t (v1− v2))
1

Ft(−tv2) + Ft(tv1)

+
1t

(t − t0)2 θ(1− t (v1− v2))

∫ tv2+1
2

tv1−1
2

dz
e−

t
2 (v

2
1+v2

2)e
z2

t
+12

4t

[Ft(12 + z) + Ft(12 − z)]2
. (42)

Note that as expectedP [2]
ret. vanishes fort (x0

1 − x0
2) > t0(x1 − x2) for (x1 − x2) > 0. (See the

comments below.) Note also that in the coinciding limitx1 = x2 one has

P
[2]
ret.(x, t |x0, t0)|x1=x2 = δ(x0

1 − x0
2)

√
t

2π(t − t0)2 exp

[
− t (x − x

0)2

2(t − t0)2
]

= δ(x0
1 − x0

2)P
[1]
ret.(x, t |x0, t0).

This means that two trajectories at identical final positions did start at identical initial points.
The same applies to then-trajectories probability distribution functions:

P
[n]
ret.(xj , t |x0

j , t0)|xn=xn−1 = δ(x0
n − x0

n−1)P
[n−1]
ret. (xj , t |x0

j , t0). (43)

In other words, Lagrangian trajectories are statistically well-defined backwards.
• Consider now the forward probability distributionP [2]

adv.. It is less straightforward to
compute, but the relevant information can be extracted from the formula forH [2](xj , t |x0

j , t0),
which is a sum of two contributions:

H [2](xj , t |x0
j , t0) = K1(xj , t |x0

j , t0) +K2(xj , t |x0
j , t0).
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SinceH [2] is symmetric, it is enough to evaluate it forx1 > x2. To simplify the notations, we
set

1 = x1− x2 > 0 and vj ≡ vxj ,x0
j
= xj − x0

j

t − t0 .

Then

K1(xj , t |x0
j , t0) =

∫ ∞
max(tv1−1

2 ,tv2+1
2 )

dz

Ft (
1
2 + z) + Ft(12 − z)

(44)

and

K2(xj , t |x0
j , t0) =

1

t

∫ ∞
tv1

dz1

∫ ∞
tv2

dz2 θ(1− (z1− z2))

×
∫ z2+1

2

z1−1
2

dz
e−

1
2t (z

2
1+z2

2)e
z2

t
+12

4t

[Ft(12 + z) + Ft(12 − z)]2
. (45)

Of course, one could recover the results for the backward probabilities using equation (33).
The explicit use of equation (34) leads to formulae for the forward probability which are not
really illuminating. However,H [2] can be interpreted as the probability that two particles
starting at timet0 at pointsx0

1 andx0
2, respectively, have abscissae att larger thanx1 and

x2, respectively. And indeed, one can check explicitly on the above formula forH [2] many
expected physical properties of trajectories:

(i) Particles do not cross each other: ifx0
1−x0

2
x1−x2

6 t0
t

(and in particular if(x0
1−x0

2)(x1−x2) 6 0),

H [2] reduces to a one-particle distribution:

H [2](xj , t |x0
j , t0) =

√
t

2π

∫ ∞
max(v1,v2)

du e−u
2t/2

=
{
H [1](x1, t |x0

1, t0) for x1 > x2

H [1](x2, t |x0
2, t0) for x1 6 x2.

(46)

Taking derivatives with respect tox1 andx2, one finds a vanishing probability density if
the respective orders of the particle positions have changed between initial and final times.

(ii) Trajectories are well-defined forward: for fixedx1,x2 and t , formula (46) is valid for
|x0

1 − x0
2| small enough, and leads to

lim
x0

1,x
0
2→x0

H [2](x1, x2, t |x0
1, x

0
2, t0) = H [1](max(x1, x2), t |x0, t0)

=
√
t

2π

∫ ∞
max(x1,x2)−x0

t−t0

du e−u
2t/2.

Taking the derivatives with respect tox1 andx2 gives

lim
x0

1,x
0
2→x0

P
[2]
adv.(x1, x2, t |x0

1, x
0
2, t0) = δ(x1− x2)P

[1]
adv.(x, t |x0, t0)

= δ(x1− x2)

√
t

2π(t − t0)2 exp

[
− t (x − x

0)2

2(t − t0)2
]
. (47)

•Contrary to the backward PDF,P [2]
adv. is singular at coinciding points: assumingx0

1 6= x0
2

a direct computation shows that

P
[2]
adv.(xj , t |x0

j , t0) = R(x1, t |x0
j , t0)δ(x1− x2) + · · · . (48)
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The dots refer to terms regular atx1 = x2. The coefficientR(x, t |x0
j , t0), which has the

dimension of the inverse of a length, is the probability density of aggregation of trajectories at
pointx. It is equal to

R(x, t |x0
1, x

0
2, t0) =

e−
t
2 (v

2
1+v2

2)

2πt
[Ft(tv1) + Ft(−tv2)] for v1 6 v2. (49)

Let us note that this also gives the probability thatn particles have collapsed, ifv1 andv2 refer
to the speeds of the particles with the extreme initial positions.

This formula simplifies if one is simply interested in the probability that two particles
starting at distinct points att0 have glued together at timet : integration over the final position
gives for the total gluing probability

t − t0
t

∫ ∞
|x0

1−x
0
2 |
√
t

t−t0

dv√
π

e−v
2/4. (50)

For fixedt0 andx0
1 − x0

2, andt →∞, this behaves like 1− |x0
1 − x0

2|/
√
πt − t0/t . This shows

that distinct particles are sure to be at the same point at a late enough moment of the evolution,
but this gluing occurs rather slowly.

Another special case where the general formula simplifies is the limit of identical initial
positionsx0

1 = x0
2 = x0 leading to

R|x0
1=x0

2
=
√

1

2πt
exp

[
− t (x − x

0)2

2(t − t0)2
]
.

This should be compared with formula (47). The difference is exactly equal to the
probability to go without shock fromx0 to x in the time interval [t0, t ] (41), and this has
a good explanation: two particles starting at the same point stay stuck together, two particles
starting at distinct point may coalesce only when they meet a shock, so the difference in
collapse between starting at the same point and starting infinitely close is simply encoded in
the probability that a single particle has met no shock. Integration over the final points shows
that the probability for two infinitely close particles at timet0 to have glued together at timet
is 1− t0/t .

The collapse probabilityRmay be computed in other ways. One way consists in using the
operator product algebra of operator localized on shocks, cf equation (29). Indeed, in view of
the decomposition (39) ofPadv.(x, t |x0, t0), one has the following operator product expansion:

Padv.(x1|x0
1)Padv.(x2|x0

2) = D(x1|x0
1)D(x2|x0

2) + regular

= R(x1|x0
j )δ(x1− x2) + · · ·

with R the operator localized on shocks whose form factor is the product of those of the
operatorD(x|x0), i.e.

R(x|x0
j ) =

∑
s

χ

(
µs

2t
> max

j
|ξs − vj |

)
δ(x − xs(t)).

Clearly, using the shock distribution recalled in the appendix, one gets〈R(x|x0
j )〉 =

R(x, t |x0
j , t0) as computed in equation (49).

Another way to computeR(x, t |x0
j , t0) is as follows. We know that particles do not cross,

so that from the equation of trajectories, we can infer that two particles starting atx0
1 and

x0
2 (x0

1 > x0
2), respectively, are glued together betweenx andx + dx at timet if and only if

x − x2 − (t − t0)u(x, t) 6 0 (i.e.u(x, t) > v2) andx + dx − x1 − (t − t0)u(x + dx, t) > 0
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(i.e. u(x + dx, t) 6 v1). But as recalled in the appendix on shock distribution functions, the
probability thatu(x, t) > v2 andu(x + dx, t) 6 v1 for v2 > v1 is

dx

2π

∫ ∞
v2

dv+

∫ v1

−∞
dv− t (v+ − v−)θ(v+ − v−)e−t (v2

++v2
−)/2. (51)

This leads again to the above formula forR(x, t |x0
j , t0).

6.3. A comment on persistence problems

To every random velocity distribution, one can associate domains on thex-axis, defined as
the intervals where the velocityv is continuous. Those domains change as shocks move and
annihilate into other shocks. This is a typical situation where persistence concepts are useful.
We have computed above two quantities that relate naturally to persistence. For instance the
probability to move on a Lagrangian trajectory in the time interval [t0, t ] without meeting a
shock, i.e. remaining in the same domain was found to bet0/t . In the same vein, the probability
for two particles starting on Lagrangian trajectories at distancex > 0 from each other at time
t0 to be at distinct positions at timet was found to be

1− t − t0
t

∫ ∞
x
√
t

t−t0

dv√
π

e−v
2/4 (52)

which behaves for larget and fixedx andt0 as
x√
πt

+
t0

t
. (53)

In particular there is no unexpected persistence exponent.
Let us note that the more usual definition of persistence, which is not related to Lagrangian

trajectories but deals with points that do not move with time, leads to a different kind of
behaviour† that can be computed by direct use of the distribution of velocities. For instance,
the probability that a fixed point (say, the origin) is not hit by any shock in the interval [t0, t ] is∫

dy

[∫
dy ′ exp

(
sup
t ′∈[t0,t ]

y2 − y ′2
2t ′

)]−1

. (54)

In the limit t/t0→∞, this exhibits the slightly non-trivial behaviour(
2

π

(
t0

t

)
log

(
t

t0

))1/2

(55)

quite different from the previous results for moving particles.

7. Inverse cascade

We now consider properties of a tracer advected in the inviscid Burgers decaying turbulence.
In particular, we argue that there is no dissipative anomaly and that the energy cascade is
inverse.
• As previously explained, in the inviscid limit the appropriate transport equations are

equations (5), (6). In the limitκ → 0, their solutions may be written in terms of the backward
and forward probability distributions. Namely,

T (x, t) =
∫

dx0Pret.(x, t |x0, t0)T0(x
0)

= T0(x − (t − t0)u(x, t)) (56)

† This comparison was suggested to us by Claude Godrèche.
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and

ρ(x, t) =
∫

dx0Padv.(x, t |x0, t0)ρ0(x
0)

= (1− (t − t0)∂xu(x, t))ρ0(x − (t − t0)u(x, t)) (57)

whereT0(x
0) andρ0(x

0) are the initial conditions at timet0.
Since correlations of the trajectory probability distributions are computable, it is not hard to

evaluate correlations of the scalars. Let us illustrate this by showing that there is no dissipation
of energy for the tracerT (x, t) and hence no dissipation anomaly forT . The mechanism for
that property is similar to the one described in [5] in the case of the compressible Kraichnan’s
model. Assume that one is given the translation invariant two-point function of the initial data:

〈T0(x1)T0(x2)〉 = 0(x1− x2).

The density of energy of the tracer isE(x, t) = 1
2T

2(x, t). Its average is

〈E(t)〉 = 1
2

∫
dx0

1 dx0
2 P

[2]
ret.(x, x|x0

1, x
0
2)〈T0(x

0
1)T0(x

0
2)〉

= 1
2

∫
dx0P

[1]
ret.(x|x0)0(0) = 1

20(0)

where we have used equation (43) forP
[2]
ret. at coinciding points and the normalization condition

for P [1]
ret.. Thus energy is conserved in mean,〈E(t)〉 = E0, and this is due to the fact that the

trajectories are statistically well-defined backward. Notice, however, that at fixed initial data
the density of energy decreases at large time as〈E(x, t)〉 ' 1√

2πt

∫
dy T 2

0 (y) if the integral
converges.

More generally, the well-defined character of the trajectories may also be formulated as
the following operator product identity:

Pret.(x, t |x0
1, t0)Pret.(x, t |x0

1, t0) = δ(x0
1 − x0

2)Pret.(x, t |x0
1, t0).

As a consequence, any products of solutions of the transport equation (5) atκ = 0 will also
be solution. In particular, any powers ofT (x, t) are also solutions:

∂tT
n(x, t) + 1

2(u(x
+, t) + u(x−, t))∂xT n(x, t) ∼= 0

inside correlation functions. This shows the absence of dissipative anomalies in the passive free
advection which means that the fieldsκT n∂2

xT vanish inside correlation functions atκ = 0.
• This is the sign of the absence of a direct energy cascade, as in the two-dimensional

turbulence in which the energy cascade is inverse, i.e. toward the large scales [11]. To show
it more explicitly let us now assume that one is injecting energy to the tracer such that the
transport equation is now

∂tT (x, t) + 1
2(u(x

+, t) + u(x−, t))∂xT (x, t) = f (x, t) (58)

with f (x, t) the forcing term. Solutions of this equation with zero initial data at timet0 are:

T (x, t) =
∫ t

t0

ds
∫

dy Pret.(x, t |y, s)f (y, s)

=
∫ t

t0

ds f (x − (t − s)u(x, t), s). (59)

Assume that the two-point function of the force is delta-correlated in time:

〈f (y1, s1)f (y2, s2)〉 = CL(y1− y2)δ(s1− s2) (60)



Sailing the deep blue sea of decaying Burgers turbulence 5195

with CL(x) a smooth function varying on scaleL and with rapid decrease at infinity. The
energy injection rate ise = 1

2CL(0). Using again the fact that trajectories are well-defined
backward, equation (43), one finds that the average of the tracer energy density at timet is:

〈E(t)〉 = 1
2

∫ t

t0

ds
∫

dy P [1]
ret.(x, t |y, s) CL(0)

= 1
2(t − t0)CL(0) = (t − t0)e (61)

where, again, we used the well definedness of the trajectories (see equation (43)) and the
normalization of the probabilities. Thus, the total amount of energy injected into the system
is transfered without dissipation.

To decipher in which mode the energy is injected, let us consider the scalar two-point
function at distinct points. For forcing delta-correlated in time as in equation (60), the two-
point function is

〈T (x2, t)T (x1, t)〉 =
∫ t

t0

ds dy1 dy2P
[2]
ret.(xj , t |yj , s)CL(y1− y2).

It behaves at large time and fixed positions as

〈T (x2, t)T (x1, t)〉 = (t
√
π − |x2 − x1|

√
t)

∫ 1

0

ds√
π
CL(s|x2 − x1|) + F(x2, x1) + O(1/

√
t)

with F(x2, x1) finite ast → ∞ scaling as|x2 − x1| at small distance. The energy is thus
transfered to the mode corresponding to the first line of the above equation. Its amplitude
increases with time. It is a soft, although non-constant, mode varying smoothly and slowly.

To make manifest the absence of dissipation, consider products of the forced scalar (59)
at coincident points. One has

T n(x, t) =
n∏
j=1

∫ t

t0

dsj f (x − (t − sj )u(x, t), sj ).

Using again equation (36) or (28), one deduces that inside correlation functions

∂tT
n(x, t) + 1

2(u(x
+, t) + u(x−, t))∂xT n(x, t) ∼= nf (x, t)T n−1(x, t).

This shows that there is no dissipative anomalies atκ = 0 in the scalar advection. Note that
what we have described is a limit whenκ goes to zero first and thent goes to infinity to reach
the stationary state.

Again, the mechanism is similar to the one found in compressible Kraichnan’s models [5]:
the injected energy is accumulated in the soft mode, there is no dissipative anomaly and the
energy cascade is inverse. This is directly related to the fact that the trajectories are statistically
well defined.
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Appendix A. Velocity probability distributions

In this appendix, we recall known formulae for the one- and two-point probability distributions
for velocities (see e.g. [8]). We just give a reminder of the computational rules and illustrate
it in the case of the one-point-velocity PDF. A further illustration is given in appendix B.
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We defineS(x, t) = minj (φj + (x−yj )2
2t ) so thatu(x, t) = ∂xS(x, t). The pairs(φj , yj )

are described by a Poisson point process, saying that the cell of size dφ dy in the(φ, y)-plane
is occupied with probability eφ dφ dy, disjoint cells being independent. This leads to the
following useful fact that ifD is any measurable set in the(φ, y)-plane, the probability that
all cells inD are empty is e−

∫
D

eφ dφ dy . We call that pair(φj , yj ) giving the minimum ofS at
the point(x, t) the parameters at(x, t).

A.1. One-point-velocity PDF

We look for the probabilityP(u(x, t) ∈ [v, v + dv]). The law for the Poisson point process
reads in this case:

• A cell (φ, y) with x−y
t
∈ [v, v + dv] is occupied.

• The cells inD = {(φ′, y ′) such thatφ′ + (x−y ′)2
2t < φ + (x−y)2

2t = φ + v2t
2 } are empty.

Therefore,

P(u(x, t) ∈ [v, v + dv]) =
∫
x−y
t
∈[v,v+dv]

eφ dφ dye−
∫
D

eφ
′
dφ′ dy ′ .

Let us perform this computation in detail. First we put the integral overφ′, which varies
between−∞ andφ + (x−y)2

2t − (x−y ′)2
2t . This yields

P(u(x, t) ∈ [v, v + dv]) =
∫
x−y
t
∈[v,v+dv]

eφ dφ dy e−
∫

eφ+(x−y)2/2t−(x−y′)2/2t dy ′ .

Then, we integrate overφ to get

P(u(x, t) ∈ [v, v + dv]) =
∫
x−y
t
∈[v,v+dv]

dy
e−(x−y)

2/2t∫
e−(x−y ′)2/2t dy ′

.

Let us note that the possibility to integrate explicitly over the variableφ′ parametrizing the
empty domainD and over the ‘centre of mass’ of the variablesφ parametrizing the occupied
cells is typical. In this explicit example, the other integrations are also immediate, but this is
rather unusual.

They ′ integral gives a factor 1/
√

2πt and the integration domain fory is infinitesimal,
soy = x − vt and dy = t dv. Finally:

P(u(x, t) ∈ [v, v + dv]) =
√
t

2π
e−tv

2/2 dv.

Let us observe that it has total mass 1, ensuring that this computation, which does not
take shocks into account, does not miss any event of non-zero measure. This is a sign that the
shocks are diluted.

A.2. Two-point-velocity PDF

We look for the probabilityP(u(x1, t) ∈ [v1, v1+dv1], u(x2, t) ∈ [v2, v2+dv2]). By symmetry,
we may (and shall) assumex1− x2 ≡ 1 > 0. There are two possibilities:

(i) One parabola.
• A cell (φ, y) with x1−y

t
∈ [v1, v1 + dv1] and x2−y

t
∈ [v2, v2 + dv2] is occupied.

• The cells inD = {(φ′, y ′) such thatφ′ + (x1−y ′)2
2t < φ + (x1−y)2

2t or φ′ + (x2−y ′)2
2t <

φ + (x2−y)2
2t } are empty.
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(ii) Two parabolae.

• A cell (φ1, y1)with x1−y1

t
∈ [v1, v1+dv1] and a cell(φ2, y2)with x2−y2

t
∈ [v2, v2+dv2]

are occupied, such thatφ1 + (x1−y1)
2

2t < φ2 + (x1−y2)
2

2t andφ2 + (x2−y2)
2

2t < φ1 + (x2−y1)
2

2t .

• The cells inD = {(φ′, y ′) such thatφ′ + (x1−y ′)2
2t < φ1 + (x1−y1)

2

2t or φ′ + (x2−y ′)2
2t <

φ2 + (x2−y2)
2

2t } are empty.

Accordingly, P(u(x1, t) ∈ [v1, v1 + dv1], u(x2, t) ∈ [v2, v2 + dv2]) is a sum of two
contributionsP1parabandP2parabwhich are found after some computation to be:

P1parab= t2 dv1 dv2 δ(1− t (v1− v2))
1

Ft(−v2t) + Ft(v1t)

and

P2parab= 1t dv1 dv2 θ(1− t (v1− v2))e
−t (v2

1+v2
2)/2+12/4t

×
∫ tv2+1/2

tv1−1/2
dz

ez
2/t

[Ft(12 − z) + Ft(12 + z)]2
.

Let us recall thatF(x) ≡ ex
2/2√
2π

∫ x
−∞ dy e−y

2/2 andFt(x) ≡
√

2πtF (x/
√
t).

Again, one can check explicitly that the sum has total mass 1, or even better that the integral
overv1 or v2 gives again the one-point PDF. This computation shows thatP1parabwhich lives
on a codimension-one hyperplane, is completely determined as a kind of boundary ofP2parab.

A.3. Distribution of shocks

The two-point PDF for velocities allows us to compute the probability to have a shock such
thatu(x, t) = v+ andu(x + dx, t) = v− betweenx andx + dx by taking1→ 0. The result is

dx

2π
dv+ dv− t (v+ − v−)θ(v+ − v−)e−t (v2

++v2
−)/2. (62)

This can be expressed as the probability of finding a shock of amplitudeµ/t = v+ − v− and
velocity ξ = (v+ + v−)/2 in the interval [x, x + dx] as

dx

2πt
dµ dξ µθ(µ)e−ξ

2t−µ2/4t. (63)

In particular, the probability to have a shock in the interval [x, x + dx] is dx/
√
πt . This

involves only configurations with two parabolae, whereas the probability that there is no shock
in a finite interval [x, x ′] is computed with configurations involving one parabola and found
to be

∫
dy (Ft (y − x) + Ft(x ′ − y))−1. This makes it intuitively (if not mathematically) clear

that with probability one a finite interval contains only a finite number of shocks.

Appendix B. One-point PDF without shock

In this appendix, we compute the probabilityP(x, t |x0, t0)no shockthat a particle starting at point
x0 at timet0 arrives in [x, x + dx] at timet without ever meeting a shock. This corresponds to
the following configuration:

• A cell (φ, y) with x0 + x0−y
t0
(t − t0) ∈ [x, x + dx] is occupied. Letv = (x0 − y)/t0.

• The cells inD = {(φ′, y ′) such thatφ′ + (x0+v(t ′−t0)−y ′)2
2t ′ < φ + (x0+v(t ′−t0)−y)2

2t ′ for some
t ′ ∈ [t0, t ]} are empty.
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The second constraint seems complicated. We claim that it is equivalent to the extreme
constraint fort ′ = t :
• The cells inD = {(φ′, y ′) such thatφ′ + (x0+v(t−t0)−y ′)2

2t < φ + (x0+v(t−t0)−y)2
2t } are empty.

This is a direct consequence of an important property of trajectories. As already stated
before, Lagrangian trajectories stick to shocks as soon as they meet one. We can even be a bit
more precise. Suppose that at time(x, t) the parabola of parameters(φ, y) dominates(φ′, y ′),
so

φ +
(x − y)2

2t
< φ′ +

(x − y ′)2
2t

(64)

or better

φ − φ′ < (y − y ′)(2x − y − y ′)
2t

. (65)

Consider a fictive particle moving at constant speedv = (x − y)/t and arriving at pointx at
time t . At time t0 < t it was at pointx0 = x − v(t − t0). The identity

(y − y ′)(2x0 − y − y ′)
2t0

− (y − y
′)(2x − y − y ′)

2t
= t − t0

2t t0
(y − y ′)2 > 0 (66)

proves that the parabola of parameters(φ, y)was already dominant at(x0, t0). This proves that
the equivalence of the two above definitions of the forbidden domainD. This also means that
if point x is not on a shock at timet andu(x, t) = v, there is a unique backward Lagrangian
trajectory through(x, t), defined back to timet0 and such that att0 the particle was at point
x0 = x − v(t − t0).

So we need to compute∫
x0+ x0−y

t0
(t−t0)∈[x,x+dx]

eφ dφ dye−
∫
D

eφ
′
dφ′ dy ′ .

Again, integration overφ′, φ andy ′ is straightforward, and yields

P no
shock

(x, t |x0, t0) dx =
(
t0

t

) √
t

2π(t − t0)2 exp

[
− t (x − x0)

2

2(t − t0)2
]

dx.

Hence, the probability that no shock is met in the interval [t0, t ] is simply t0/t .
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